Ветер. общая циркуляция атмосферы

Что такое циркуляция атмосферы

Одной из важных составляющих, которые оказывают влияние на формирование климата планеты Земля, является циркуляция атмосферы

Данное явление представляет собой закрытую систему воздушных течений над Землей в планетарных масштабах и оказывает важное влияние на осадки, погоду, облачность, смену температур. Проявляется циркуляция в виде постоянно возникающих больших вихрей в атмосфере, развивающихся и перемещающихся разнообразно

Возникновение таких вихрей носит название циклоны и антициклоны и является характерным показателем общей циркуляции атмосферы.

Циркуляция атмосферы составляет систему из воздушных масс четырех типов, а именно:

экваториальных, формирующихся в зоне экватора и имеющих стойкие высокие температуры и повышенную влажность;

умеренных, господствующих в умеренных широтах;  

тропических, формирующихся в тропических и субтропических широтах земного шара и периодически распространяющихся на экваториальные широты;

арктических, представляющих собой воздушные течения над Антарктидой и Арктикой и имеющих низкие температуры и небольшую влажность воздуха.

Муссоны

В некоторых областях Земли перенос воздуха в нижней половине тропосферы носит название муссонов. Муссоны — это устойчивые сезонные режимы воздушных течений с резким изменением преобладающего направления ветра от зимы к лету и от лета к зиме. В каждом месте области муссонов в течение каждого из двух основных сезонов существует режим ветра с резко выраженным преобладанием одного направления над другими. При этом в другом сезоне преобладающее направление ветра будет противоположным или близким к противоположному. Таким образом, в каждой мус-сонной области есть зимний муссон и летний муссон с взаимно противоположными или, по крайней мере, с резко различными преобладающими направлениями.

В случае муссонов, как и в случае пассатов, устойчивость распределения вовсе не означает, что в течение сезона над данным районом удерживается один и тот же антициклон или одна и та же депрессия. Муссоны наблюдаются в тех районах, где циклоны и антициклоны обладают достаточной устойчивостью и резким сезонным преобладанием одних над другими.

Особенно резко выраженные и устойчивые муссоны наблюдаются в тропических широтах.

Основную причину тропических муссонов можно видеть в различном нагревании полушарий в течение года. Если по обе стороны от экватора находится океан, то указанные сезонные смещения зон давления невелики и муссоны не получают особого развития. Но, например, над материком Африки распределение давления меняется от января к июлю сильно. В связи с этим направление барических градиентов над тропической Африкой от сезона к сезону резко меняется в широкой полосе, что и является здесь причиной муссонов.

3.1. Атмосферное давление

Давление воздуха тесно связано с условиями атмосферной цирку­ляции в данном районе и является одной из важнейших ее характеристик.

Данные по давлению воздуха в Новгороде, представленные в таблицах, получены на основе многолетних наблюдений по ртутному барометру. В табл. 14 они даны для высоты установки барометра 25,6 м (на уровне станции) и для нулевой высоты (на уровне моря). Пересчет давления от уровня станции к другим; высотам в пределах города или вблизи него может быть осуществлен с помощью приближенного соотношения: на каждые 8 м высоты давление уменьшается на 1 гПа. Один гектопаскаль (гПа) численно равен применявшемуся ранее миллибару (мбар).

Среднее годовое давление воздуха в Новгороде составляет 1011 гПа (табл. 14), оно является устойчивым во времени. Отклонения атмосферного давления в отдельные годы от этого значения весьма незначительны. Самое высокое за весь период наблюдений среднее годовое давление воздуха (1014,9 гПа) отмечено в 1972 г., а самое низкое (1007,1 гПа) — в 1925 г

В течение года атмосферное давление изменяется мало, от 1012,5 гПа в ноябре до 1007,8 гПа в июле. Годовая амплитуда, его (4,7 гПа) мала. Однако изменения средних месячных значений давления из года в год значительны. Так, зимой, как видно из табл. 14, разность между их наибольшим рнаиб и наименьшим рнаим значениями в каждом месяце составляет 31—35 гПа, летом — 13— 18 гПа. Самое высокое (1032,5 гПа) и самое низкое (997,5 гПа) среднее месячное давление воздуха в Новгороде отмечалось в феврале 1886 г. и 1935 г. соответственно. Суточный ход давления воздуха выражен гораздо слабее, чем годовой, практического значения не имеет и здесь не рассматривается.

Годовой и суточный ход давления воздуха перекрывается в- значительной мере непериодическими колебаниями. Эти колебания связаны с прохождением и развитием барических образований (циклонов, антициклонов и др.), они и определяют общий характер изменений давления воздуха в Новгороде. О возможных значениях давления воздуха в отдельные дни можно судить по абсолютному максимуму рмакс И абсолютному  минимуму рмин В табл. 14, выбранным из всех сроков наблюдений в каждом месяце. Атмосферное давление в Новгороде 22 января 1907 г. достигало своего наивысшего значения 1059,2 гПа (1062,3 гПа на ур.м ), а 17 января 1931 г. упало до 953,7 гПа (959,8 гПа на ур. м.). Такие рекордные значения давления в Новгороде отмечаются крайне редко, вероятнее всего они зимой. К лету диапазон изменений давления сокращается почти вдвое.

Колебания давления воздуха, связанные с циклонической деятельностью, обычно характеризуются междусуточной изменчивостью — изменением давления воздуха от одних суток к другим (без учета знака изменения). С октября по март междусуточная изменчивость является наибольшей в году и составляет в среднем за месяц 6,3—7,0 гПа (табл. 15). В отдельные редкие дни давление воздуха может понизиться за одни только сутки на 42,3 гПа, как это наблюдалось с 12 по 13 февраля 1962 г., или повыситься на 36,7 гПа (25—26 февраля 1940 г.). Летом перепады давления от одних суток к другим значительно меньше (3,2—3,9 гПа).

Повторяемость разных градаций междусуточной изменчивости давления воздуха в отдельные дни (знак изменения давления воздуха учитывался) дана в табл. 16.

 

 

Местные эффекты

Ячейки Хэдли, Феррела и Полярные клетки дают общее представление об атмосферной циркуляции. Однако местные эффекты очень важны и модулируют эту циркуляцию и создают субклетки. На последние влияют разница в поверхностном трении, способность поглощать и дифференцированно выделять тепло между океанами и сушей, а также суточный цикл солнечного света. Он работает даже в микромасштабе. Например, в случае морского бриза воздух с берега, нагретый Солнцем, поднимается вверх и заменяется более прохладным воздухом из воды. Ночью земля теряет тепло быстрее, чем вода, и направление ветра меняется на противоположное.

В более широком масштабе этот суточный цикл может стать сезонным или даже многолетним. Теплый воздух экваториальных континентов и западной части Тихого океана поднимается вверх, движется на восток или запад в зависимости от обстоятельств, пока не достигает тропопаузы, затем опускается в Атлантическом , Индийском или Восточном Тихом океане, более холодный.

Кровообращение Уокера

Нормальная конвективная циркуляция Уокера

Уменьшение пассатов нарушает цикл Уокера и позволяет горячей воде течь дальше на восток.

Усиление ветров растягивает область, покрытую кровообращением Уокера, и укрепляет ее.

Тихоокеанская ячейка, которая полностью океаническая, особенно важна. Ему было дано имя Уолкер клеток в честь сэра Гилберта Уокера , директора в начале XX — го  века метеорологических обсерваторий Индии . Он пытался найти способ предсказывать муссонные ветры. Хотя он и потерпел неудачу, его работа привела его к открытию периодического изменения давления между Индийским и Тихим океанами, которое он назвал Южным колебанием . Две другие идентичные клетки находятся недалеко от экватора в Индийском океане и в Южной Атлантике.

Гумбольдта , исходя из Антарктиды, охлаждает побережье Южной Америки. Следовательно, существует большая разница температур между западом и востоком этого огромного океана, что вызывает прямую циркуляцию, подобную циркуляции Хэдли. Наблюдается конвекция в западной части около Азии и Австралии и опускание в области высокого давления вдоль побережья Южной Америки. Это создает сильную обратную циркуляцию с востока, которая производит эффект каракатицы  : уровень моря в западной части Тихого океана на 60 см выше, чем на востоке.

Движение воздуха в этой циркуляции влияет на температуру во всей системе, которая циклически создает необычно теплые или холодные зимы через несколько лет. Это также может изменить частоту ураганов.

Эль-Ниньо и Южное колебание

Поведение ячейки Уокера — главный ключ к пониманию явления Эль-Ниньо (на английском языке ENSO или Эль-Ниньо — Южное колебание). Если конвективная активность снижается в западной части Тихого океана по не совсем понятным причинам, клетка разрушается. Западная циркуляция на высоте уменьшается или прекращается, что перекрывает подачу холодного воздуха в восточную часть Тихого океана, а восточный возвратный поток с поверхности ослабевает.

Это позволяет теплой воде, скопившейся в западной части Тихого океана, спускаться по склону в сторону Южной Америки, что изменяет температуру поверхности моря в этой области в дополнение к нарушению морских течений. Это также полностью меняет систему облаков и дождя, а также создает необычные температуры в Северной и Южной Америке, Австралии и на юго-востоке Африки .

Между тем в Атлантике сильные западные ветры, которые обычно блокируются циркуляцией Уокера, теперь могут достигать необычной силы. Эти сильные ветры отсекают восходящие столбы влажного воздуха от гроз, которые обычно превращаются в ураганы, и таким образом сокращают их количество.

Противоположностью Эль-Ниньо является Ла-Нинья . В этом случае конвекция в западной части Тихого океана увеличивается, что усиливает клетку Уокера, приносящую более холодный воздух вдоль побережья Америки. Последний дает более холодные зимы в Северной Америке и больше ураганов в Атлантике. Поскольку горячая вода под высоким давлением выталкивается на запад, это позволяет холодной воде из глубин подниматься вверх к побережью Южной Америки, что обеспечивает лучшую поставку питательных веществ для рыбы и обеспечивает отличную рыбалку. Однако при ясной погоде в одном и том же регионе наблюдаются продолжительные периоды засухи.

Возникновение внетропических циклонов

Атмосферные возмущения внетропических широт возникают преимущественно на главных фронтах тропосферы, т. е. на фронтах между полярным (умеренным) и тропическим воздухом или между арктическим и полярным воздухом.

Этот процесс можно рассматривать как возникновение на поверхности главного фронта огромных волн, с длинами порядка 1000 км и более. На главном фронте, протяжением в несколько тысяч километров, возникает обычно несколько волн, перемещающихся по фронту чаще всего с запада на восток.

При этом в долинах фронтальных волн развивается циклоническое движение и давление падает: образуются циклоны. Центр каждого циклона лежит на фронте; фронт, таким образом, проходит через внутреннюю часть циклона (рис. 105). В передней части циклона фронт продвигается к высоким широтам и имеет здесь характер теплого фронта. В тыловой части циклона фронт продвигается к низким широтам и имеет здесь характер холодного фронта. Тот и другой являются участками единого главного фронта. Соответственно возникают в циклоне и системы облаков и осадков, свойственные фронтам.

Сами фронты в циклоне обостряются вследствие существующей там сходимости воздушных течений. Язык теплого воздуха в циклоне, между теплым и холодным фронтом, носит название теплого сектора циклона. В нем наблюдаются в циклоне самые высокие температуры у земной поверхности. Циклон в этой стадии развития — с теплым сектором — называется молодым циклоном; с течением времени он углубляется, т. е. давление в его центре падает. Сам циклон перемещается по фронту обычно в восточном направлении. При этом холодный фронт в области циклона постепенно нагоняет медленнее перемещающийся теплый фронт и, наконец, смыкается с ним. Происходит так называемая окклюзия циклона. В окклюдированном циклоне теплого сектора у земной поверхности уже нет — теплый воздух теперь оттеснен холодным воздухом в верхнюю часть тропосферы, где он охлаждается путем излучения, а сам циклон становится холодным и высоким. Скорость его перемещения убывает, а давление в центре начинает повышаться — начинается затухание циклона.


Рис. 105. Схема развития фронтального циклона а, б — начальные стадии, в — молодой циклон, г, д — окклюдированный циклон

На каждом полярном фронте возникает обычно не единичный циклон, а серия циклонов из нескольких членов, перемещающихся вдоль фронта один за другим. Вследствие уменьшения скорости перемещения после окклюзии циклоны серии обычно нагоняют друг друга и могут, в конце концов, объединиться в одну обширную высокую и малоподвижную депрессию — центральный циклон. Так как циклоны движутся с составляющими, направленными к высоким широтам, центральный циклон образуется в довольно высоких широтах, субполярных или близких к субполярным. Обычная продолжительность существования серии циклонов около недели, но центральный циклон может существовать и дольше.

Примечания и ссылки

  1. Флоран Беухер , Руководство по тропической метеорологии: от пассатов к циклону , т.  1, Париж, Метео-Франс ,25 мая 2010 г., 897  с. , гл.  3 («Среднезональный климат»), с.  49-68
  2. , с.  98
  3. (in) (244 КБ)
  4. .
  5. (in) AM Thompson , W.-K. Тао , К. Э. Пикеринг , Дж. Р., Скала и Дж. Симпсон , «  Глубокая тропическая конвекция и образование озона  » , Бюллетень Американского метеорологического общества , Американское метеорологическое общество , т.  78, п о  6,1997 г., стр.  1043-1054 )
  6. (in) Т. Корти , Б. П. Луо , К. Фу , Х. Фемель и Т. Петер , Влияние перистых облаков на перенос тропосферы в стратосферу , Атмосферная химия и физика , Американское метеорологическое общество ,
    3 июля 2006 г., стр.  2539-2547
  7. , с.  99
  8. ↑ и Флоран Бойхер , Руководство по тропической метеорологии: от пассатов к циклону , т.  1, Париж, Метео-Франс ,25 мая 2010 г., 897  с. , гл.  2 («Энергетический баланс»), с.  41 — 43Раздел 2.8
  9. .
  10. Ричард Ледюк и Раймон Жерве , « Знакомство с метеорологией» , Монреаль, Университет Квебека ,1985 г., 320  с. , стр.  72 (раздел 3.6 Основные характеристики общего обращения)
  11. ↑ и (fr)

Минимумы и максимумы

Типы Тепловое антициклон  • барометрического Крит  • субтропический Крит  • барометрического Creux  • муссон корыта  • Cyclone внетропического  • Cyclone субтропического  • Cyclone после тропического  • Тропического циклона  • Cyclone полярной  • вырубленной Депрессии  • Полярного депрессия  • тепловой депрессия  • Погода Shortwave  • Тропических волны  • Vortex полярным
Полуперманентная депрессия Исландский низкий  • Алеутская депрессия  • Азиатская депрессия
Полуперманентные максимумы Антициклон Атлантический (Азорские острова / Бермудские острова)  • антициклон Сибирский  • Североамериканский высокий  • Антициклон острова Св. Елены  • антициклон Остров Пасхи  • Гавайский антициклон  • антициклон Маскарен  • Антарктический антициклон
Классические траектории непостоянных депрессий Альберта Клиппер  • Впадина в Генуэзском заливе (иногда)  • Нористер  • Зимние штормы в Европе  • Синоптические штормы континентальные США
Метеорологический глоссарий • Шкала Саффира-Симпсона

Метеорологический портал

Внетропические циклоны

В течение года во внетропических широтах каждого полушария возникают многие сотни циклонов. Размеры внетропических циклонов весьма значительны. Хорошо развитый циклон может иметь в поперечнике 2-3 тыс. км. Это значит, что он может одновременно покрывать несколько западноевропейских стран и определять режим погоды на этой огромной территории.

Вертикальное распространение циклона меняется по мере его развития. В первое время циклон заметно выражен лишь в нижней части тропосферы. В передней части циклона, с притоком воздуха из низких широт, температуры повышены; в тыловой, с притоком воздуха из высоких широт, напротив, понижены.

Но при последующем развитии циклон становится высоким. При этом температура воздуха в циклоне в общем понижается, а температурный контраст между передней и тыловой частью более или менее сглаживается. Возможно и проникновение циклона в стратосферу.

Тропопауза над хорошо развитым циклоном прогнута вниз в виде воронки. Температура нижней стратосферы над циклоном при этом повышена.

Температурные контрасты в области циклона объясняются тем, что циклон возникает и развивается на главном фронте (полярном или арктическом) между воздушными массами разной температуры. В циклоническую циркуляцию втягиваются обе эти массы.

В дальнейшем развитии циклона теплый воздух оттесняется в верхнюю часть тропосферы и сам подвергается там радиационному выхолаживанию. Горизонтальное распределение температуры в циклоне становится более равномерным, и циклон начинает затухать.

Давление в центре циклона (глубина циклона) в начале его развития, конечно, ненамного отличается от среднего: это может быть, например, 1000-1010 мб. Однако в особенно глубоких циклонах давление понижается до 960-950 мб.

Вместе с углублением циклона растут и занимаемая им площадь, и барические градиенты, и скорости ветра в нем. Ветры в глубоких циклонах сильные и иногда достигают штормовых скоростей на больших территориях.
Жизнь циклона продолжается вообще несколько суток. В первой половине своего существования циклон углубляется, во второй — заполняется и, наконец, исчезает вовсе (затухает). В некоторых случаях существование циклона оказывается длительным, особенно если он объединяется с другими циклонами, образуя одну общую глубокую, обширную и малоподвижную область низкого давления, так называемый центральный циклон.

Пассаты

Пассаты — это устойчивые в общем восточные ветры умеренной скорости (в среднем 5-8 м/сек у земной поверхности), дующие в каждом полушарии на обращенной к экватору стороне субтропической зоны высокого давления. Однако субтропические зоны даже на средних картах (а тем более на картах ежедневных) распадаются на отдельные антициклоны. Таким образом, пассаты — это ветры в обращенных к экватору частях субтропических антициклонов.


Рис. 95. Схема переноса воздуха в зоне пассатов. Кривые — изобары субтропических антициклонов, сплошные стрелки — ветры у земной поверхности, двойные стрелки — ветры над уровнем трения.

Субтропические антициклоны вытянуты по широте. Поэтому на их обращенной к экватору периферии изобары проходят параллельно широтным кругам, и, следовательно, пассаты над уровнем трения должны иметь восточное направление. Однако на востоке каждого антициклона к восточной составляющей ветра присоединяется еще направленная к экватору составляющая, а на западе — составляющая, направленная от экватора.
В общем же меридиональные составляющие в пассатном переносе малы по сравнению с восточной составляющей.

Распределение давления меняется в тропиках день ото дня мало. Поэтому пассаты обладают большой устойчивостью направления. Но все же, поскольку субтропические антициклоны день ото дня перемещаются, направления пассатных ветров также в общем подвержены некоторым изменениям.

Масштабы атмосферных движений

Поскольку атмосфера находится в постоянном движении, то распределение давления в атмосфере и определяемые им системы ветров все время меняются. Анализ атмосферных движений позволяет выделить следующие характерные масштабы движений.

1. Микрометеорологический масштаб, характеризующийся колебаниями температуры, давления и ветра с периодами от долей секунды до минут. Максимум этих колебаний приходится на периоды около минуты, а размеры турбулентных неоднородностей — около 600 м.

2. Масштаб конвективных облаков с горизонтальными размерами порядка 1-10 км и временем существования от десятка минут до одного — двух часов.

3. Мезометеорологический масштаб отражает изменения метеорологических величин, вызванные местными циркуляционными процессами (бризы, смерчи и др.), характерные горизонтальные размеры которых составляют 10-100 км, а продолжительность во времени — от нескольких часов до полусуток.

4. Макрометеорологический (синоптический) масштаб — горизонтальные размеры 1000-3000 км, время существования — 1-7 дней. Движения этого масштаба определяют основные изменения погоды вследствие возникновения, развития, перемещения и разрушения огромных атмосферных возмущений (атмосферных фронтов, циклонов, антициклонов и др.).

5. Глобальный масштаб, описывающий ультрадлинные волны в атмосфере. Характерные пространственные размеры движений этого масштаба 10000-40000 км, а характерный период времени — около двух недель.
В каждый конкретный момент времени в атмосфере существуют движения всех масштабов, причем крупномасштабные движения включают в себя более мелкие, что определяет чрезвычайную сложность атмосферной циркуляции.

Погода

Погода не постоянна, у нас может быть сегодня ясная погода, а завтра начаться ураган.

Характеристики погоды:

  1. Температура

  2. Влажность

  3. Атмосферное давление

  4. Облачность

  5. Осадки

  6. Ветер

Очень часто бывает, что две воздушнее массы (холодная и теплая) сталкиваются или одна заходит на другую, линию где эти массы соединяются называют атмосферный фронт.

При прохождение атмосферного фронта погода резко меняется (так как меняются воздушные массы)

Теплый фронт — образуется когда теплый воздух движется в сторону холодного.

Как меняется погода: появляется облачность, выпадают осадки

Холодный фронт — образуется когда холодный воздух движется в сторону теплого.

Холодный воздух подтекает под теплый и выталкивает его наверх.

Как меняется погода: наступает похолодание, усиливается ветер.

Климат

Климат меняется от экватора к полюсам. Выделяют несколько областей с похожим климатом — климатических поясов.

1) Похожим режимом погоды

2) Одинаковым количеством солнечной радиации

3) Формированием однотипных воздушных масс

Воздушные массы зависят от широты местности

Воздушные массы = ВМ (сокращение)

Выделяют 4 основных типа ВМ:

  1. Экваториальные — теплые и влажные

  2. Тропические — сухие и теплые

  3. Умеренные — менее теплый, но более влажные

  4. Арктические — холодные и сухие

Основные воздушные массы могу быть двух подтипов:

  1. Континентальными (формируются над метериков)

  2. Морскими (формируются над океаном)

Пример: умеренные морские воздушные массы формируется в атлантическом океане, они перемещаются западными ветрами и постепенно теряют влагу, становясь континентальными

Типы климатов имеют название по преобладающей воздушней массе

Климатообразующие факторы:

  1. Географическая широта (от нее зависит угол наклона солнечных лучей, а значит количество тепла)

  2. Циркуляция атмосферы (преобладающие ветры приносят определенные воздушные массы)

  3. Океанические течения

  4. Высота местности (с высотой температура понижается)

  5. Удаленность от океана (на побережьях перепады зимних и летних температур меньше, чем в центре материков)

  6. Рельеф (горные хребты могут задерживать воздушные массы)

Основные виды ветров:

А на море белый песок

Дует тёплый ветер в лицо

Пассаты это очень мощные ветра, они устойчивы и оказывают влияние на климат.

Примеры влияние пассатов на климат:

  • В северном полушарии пассаты на север Африки несут сухие и нагретые воздушные массы с территории Аравийского полуострова. Следовательно на севере Африки тоже будет сухой и горячий климат (пустыня Сахара).

  • В южном полушарии, на восточное побережье Африки пассат приходит с Индийского океана. Воздух насыщен водяными парами, поэтому формируется жаркий и влажный климат.

Зимой муссоны дуют с материка на океан (зимой воздух над сушей холоднее, над океаном теплее). Летом с океана на материк

По климатической карте мы можем проследить действие муссонов.

В северном полушарии летний муссон несет морские воздушные массы с экватора на полуостров Индостан, встречая на своем пути Гималаи, влажный воздух оставляет всю влагу на восточных склонах гор. Таким образом над полуотсровом Индостан в летнее время очень большое количество осадков.

Циркуляция атмосферы в России

Наибольшая часть российской территории расположена в умеренных широтах, где распространены умеренные воздушные массы. На севере государства хозяйствуют воздушные массы арктического направления, а в южных областях дуют тропические ветры.

Умеренные воздушные массы подразделяются на континентальные и морские, так как они образуются над сушей и над океаном. Со стороны Атлантики движутся морские умеренные воздушные массы, приносящие воздух повышенной влажности и оказывающие влияние на Восточно-Европейскую равнину. Зимой такое воздушное течение порождает потепление, туманы, а также снегопад. Морские умеренные воздушные массы могут преобразоваться в континентальные в результате продвижения в середину континента. Дальневосточные области России расположены под влиянием тихоокеанских морских воздушных течений.

На климат северных побережий России оказывают влияние арктические воздушные течения, которые формируются над Северным Ледовитым океаном. Такие воздушные течения способны проникают на равнины в глубь территории государства.

Южные территории России на протяжении всего года подвержены тропическим воздушным массам, приносящим сухой теплый воздух со стороны Азии и Африки. Со стороны Средиземноморья и Атлантики на Европейскую часть России воздействуют морские воздушные массы.

Воздушные массы имеют рубежи – атмосферные фронты. Над российской территорией образуются полярный и арктический фронты. В зависимости от сезона позиция фронтов изменяется. Летом на дальневосточных территориях России и в западной части Восточно-Европейской равнины усиленно действуют циклоны. Антициклоны более свойственны для южных частей Восточно-Европейской равнины. Восточная Сибирь зимой подвержена действию стойких антициклонов.

Перемещаясь над российской территорией воздушные массы обладают свойством преобразовываться и обретать новые качества.

Полярная циркуляция атмосферы

В циркуляции атмосферы ветры распределяются в зависимости от широт. В низких широтах преобладает восточный тропический перенос воздуха, в средних – западный, в высоких широтах господствует полярная циркуляция с северо-восточными ветрами в Северном полушарии и юго-восточными ветрами в Южном полушарии.

Полярная циркуляция атмосферы обусловлена формированием районов высокого давления у полюсов. Векторы изменения атмосферного давления направлены от полюсов в сторону минимума умеренных широт, в следствие чего в Арктике преобладают северо-восточные ветры, а в Антарктиде преобладают юго-восточные ветры. В Антарктиде ветры  устойчивее и обладают большей скоростью. В Арктику нередко приходят циклоны и поступает теплый воздух с северной Атлантики, в следствии чего в этом регионе восточные ветры непостоянны, на береговых территориях Америки и Евразии присутствует незначительное муссонное направление.

Виды циркуляции атмосферы

Циркуляция атмосферы имеет несколько разновидностей, среди них выделяют такие виды:

постоянные ветры,

сезонные ветры,

местные ветры

большие атмосферные вихри.

К постоянным ветрам относятся: северо-восточные и южно-восточные ветры, дующие на полюсах с районов повышенного давления; пассаты, которые распространяются от тропиков Южного и Северного полушария с высоким давлением к экватору с низким давлением; западные – ветры умеренных широт.

Сезонными ветрами являются муссоны, которые два раза в год изменяют собственную направленность. В зимний период эти ветры ведут направление от суши на море, а в летний период направление меняется и они дуют с моря на сушу.

Местными ветрами являются бризы, фен, бора, шквалы и другие ветры.

Бризы представляют собой ветры у прибрежной зоны морей и озер, которые изменяют собственную направленность два раза в день. Ночью бриз дует с берега на море, а днем – с моря на сушу.

Фен – это сухой, теплый, порывистый ветер, который дует с гор в долины.

Бора является порывистым, сильным холодным ветром, который дует с низких горных вершин в направлении теплого моря. В местности, куда дует бора, температура снижается.

Шквалы представляют собой резкое, длящееся несколько минут, усиление ветра. Несмотря на свою непродолжительность шквалы могут привести к последствиям катастрофического масштаба.

Большие атмосферные вихри формируют погоду на огромных территориях поверхности Земли, к ним относятся циклоны и антициклоны.

Циклоны – воздушные вихри крупных размеров с низким давление в центре. Циклоны характеризуются сильными разрушениями, ливнями с грозами, сильными ветрами, ураганами, штормами, снегопадами и прочими масштабными потрясениями с явлениями негативного характера. 

Для антициклона характерно повышенное атмосферное давление, где воздух распространяется от центра к периферии. Антициклон отличается хорошей и устойчивой погодой, характеризуется небольшими ветрами, ясной погодой, отсутствием осадков или их небольшим количеством.

Влияние циркуляции атмосферы на климат

Циркуляция атмосферы является важным природным явлением, которое влияет на формирование климата Земли и постоянные изменения погодных условий отдельных регионов. Перемещаемые воздушные течения, которые могут быть теплыми или холодными, сухими либо влажными, могут формировать разнообразные режимы климата. Циркуляция атмосферы играет роль в переносе влаги от океанов на континенты, из одних широт в другие.

Подстилающая поверхность местности, рельеф территорий, прибрежные течения являются факторами, обуславливающими движение воздушных масс, проникновение которых на ту или иную область земного шара формирует соответствующую погоду.

Воздушные течения имеют отличительную черту, характеризующуюся вечным движением и трансформацией, однако переходящие границы между ними достаточно резкие, в несколько километров. Такие зоны носят название атмосферные фронты и отличаются изменчивостью направления и скорости ветра, сменой давления, температуры, влажности. Местность, где проходит атмосферный фронт, меняются погодные условия. Атмосферные фронты могут быть холодными и теплыми. Холодные атмосферные фронты приносят холода, дождевые тучи, ливни. Приближению теплого фронта нередко сопутствуют обильные осадки с грозами.

В циркуляции атмосферы перенос воздушных масс и распределение ветров зависит от широт земного шара. Поступление воздушных масс с той или иной широты формирует скорость ветров, осадки, температуру на определенной территории Земли. Важную роль в циркуляции воздушных масс играют муссоны, которые представляют собой стойкие сезонные ветры, меняющие собственное направление в зависимости от сезона дважды в год.

Движение воздушных течений определяет распределение тепла и влажности в атмосфере Земли, тем самым оказывая немаловажное влияние на климат

Климатологические фронты

Постоянное расчленение барического поля Земли на циклоны и антициклоны приводит к тому, что и воздух тропосферы всегда расчленяется на воздушные массы, разделенные фронтами.
Многолетние средние положения главных фронтов в разные сезоны будем называть климатологическими фронтами.

В действительности положение и число фронтов могут резко отличаться от многолетнего среднего распределения. Фронты возникают, перемещаются и размываются в связи с циклонической деятельностью

Но сейчас следует рассмотреть среднее положение фронтов, важное для понимания распределения на Земле климатических условий.

В январе в северном полушарии на средней карте обнаруживаются два арктических фронта: один — на севере Атлантического океана и на севере Евразии, другой — на севере Североамериканского материка и над архипелагом арктического сектора Америки.

В более низких широтах, между 30 и 50° с. ш., обнаруживается цепь полярных фронтов, отделяющих области преобладания полярного воздуха (воздуха умеренных широт) от областей преобладания тропического воздуха. Полярные фронты проходят: над Атлантическим океаном; над Средиземным морем; над Тихим океаном; над югом США.

Аналогично в южном полушарии обнаруживаются антарктические фронты, окружающие материк Антарктиды, и четыре полярных фронта под 40-50° ю. ш. над океанами.

Внутри тропиков обнаруживаются тропические фронты, которые на климатологических картах сливаются или почти сливаются в один общий фронт.

В июле арктические и антарктические фронты занимают положения, близкие к январским. Полярные фронты в северном полушарии несколько смещены к северу в сравнении с январем. Полярные фронты над южным полушарием несколько смещены к экватору. Наконец, тропические фронты в июле смещены в северное полушарие. Они также объединяются на средней карте в один общий фронт.

Таким образом, от января к июлю все климатологические фронты более или менее смещаются к северу, а от июля к январю — к югу.

Что такое циркуляция атмосферы в географии — воздушные потоки в атмосфере

Атмосфера состоит из нескольких слоев. Семьдесят процентов состава – азот, еще двадцать процентов – кислород. Остальные составляющие – это другие газы, которые присутствуют в воздухе в минимальных дозах. Тепло на Земле располагается неравномерно – есть жаркие и холодные регионы, области с переменчивым климатом. Атмосферное давление и тепловое распределение влияют на подвижность воздуха в атмосфере. Циркуляция – это движение постоянного типа, которому способствует ветер. Рассмотрим основные типы воздушных масс:

  • Арктический тип. Также в географии его называют антарктическим типом. Зона формирования – наиболее холодные регионы Земли. Характеризуется круглогодичным низким уровнем температурного режима, недостаточным содержанием влаги в массах. В полярных широтах воздух зачастую очень холодный, сухой.
  • Умеренный тип. Такие воздушные потоки можно встретить  в Южном или Северном полушарии. Место расположения — умеренные широты. Это среднее, оптимальное климатическое поле, которому присущи сезонные изменения погоды. Температурный режим, уровень влажности зависят от сезона.
  • Тропический тип. Место формирования – тропики, участки, на которых земная поверхность чрезмерно нагревается. Для воздушных масс характерны высокие температуры, влажность. В некоторых тропических регионах встречаются засушливые участки – это тропические полупустыни, пустыни.
  • Экваториальный тип. Такой воздух собирается исключительно в жарких регионах, где Земля максимально прогревается. Здесь всегда повышенная влажность, высокая температура воздуха. За год может выпасть до семи тысяч миллилитров осадков. В таких районах произрастают влажные тропические леса. Они считаются легкими всей планеты. 

Общая циркуляция подчиняется определенным постоянным закономерностям. Западное течение воздуха характерно для субтропического или умеренного климатического пояса. В тропиках преимущественно течение восточное, причем весьма быстрое. Скорость движения воздушных масс может достигать 150 м/сек. 

Рис. 1 —ru.wikipedia.org

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector