«зеленый» курс: какое будущее ждет альтернативные источники энергии
Содержание:
- Первичные энергоресурсы
- Энергетические ресурсы Российской Федерации
- Топливно-энергетические ресурсы (ТЭР)
- Основные типы электростанций
- Тепловые электрические станции – ТЭС
- Дизельные электростанции
- Вторичные энергетические ресурсы
- Структура энергетики как системы
- Использование низкопотенциальной энергии ВЭР
- Ядерная энергия
- Как разные страны мира выполняют планы по энергопереходу
- Что такое электростанция
- Методы снижения потребления энергетических ресурсов
Первичные энергоресурсы
Первичные энергоресурсы извлекают из окружающей среды. К первичным энергоресурсам ( ЭР) принято относить традиционные: нефть, газ, уголь, атомную и гидроэнергию, а также нетрадиционные возобновляемые энергоресурсы ( НВЭР): солнечную, ветровую, геотермальную, гидроэнергию малых рек, энергию морских течений, волн, приливов, температурного градиента морской воды, низкотемпературного тепла Земли, воздуха, биомассы животного, растительного и бытового происхождения, водородную энергетику.
Большая доля первичных энергоресурсов — около 40 % — используется для производства электроэнергии. Доля коммунально-бытового потребления и транспорта ( соответственно 17 % и 8 %) невелика по сравнению с индустриальными странами Запада, но высока доля энергии, используемой в промышленности — 35 %, В США в 1972 г. расходовалось 32 % всего потребления энергии на транспорт, 21 % — на коммунально-бытовые нужды и 27 % — в промышленности.
По использованию первичных энергоресурсов ГЭС являются наиболее рациональными электростанциями, так как работают на ежегодно возобновляемых водных энергоресурсах.
Прогноз потребления газа в Республике Корея, млрд. куб. м.| Прогноз потребления газа в Японии, млрд. куб. м в год. |
В структуре потребления первичных энергоресурсов газ в настоящее время составляет 11 6 % от общей потребности страны. Собственная добыча газа устойчиво поддерживается на незначительном уровне около 2 — 2 5 млрд. куб. Остальные объемы импортируются в страну в виде СПГ. Япония — третья страна в мире по импорту газа после США и Германии, является крупнейшим мировым импортером СПГ.
Оценки суммарного потребления первичных энергоресурсов в 2000 г. в Западной Европе ( без СФРЮ и Турции) в двух сценариях Кэвендишской лаборатории составляют соответственно 92 млн. ТДж и 88 млн. ТДж, а на 2020 г. — 130 млн. ТДж и 120 млн. ТДж. Фриш на 2000 г. дает оценку 3800 млн. т у. ТДж), но отмечает, что две французские фирмы дают еще более высокие цифры. Таким образом, оценки суммарного потребления колеблются от 88 млн. до 114 млн. ТДж ( 2933 млн. т у.
По масштабам потребления первичных энергоресурсов США значительно опережают все другие страны.
Эти три основных вида первичных энергоресурсов обладают широкой взаимозаменяемостью, по крайней мере в сфере производства электроэнергии и централизованного теплоснабжения, что определяет достаточно большую свободу выбора между ними на основе сопоставления экономических показателей их добычи, распределения и использования.
Большая потенциальная возможность экономии первичных энергоресурсов заложена в эффективном использовании вторичных энергоресурсов ( ВЭР): физической теплоты печных и технологических газов, сбросных жидкостей, теплоты сгорания отходов химических производств, энергии избыточного давления продуктов и сырья химических производств. Во всех химико-технологических системах ( ХТС) сведение к минимуму использования первичных энергоресурсов и, наоборот, к максимуму использования ВЭР должно происходить без какого-либо снижения качества получаемой продукции.
Мировое потребление первичных источников энергии и его структура ( млн т у.т. / %. |
Для темпов мирового потребления первичных энергоресурсов ( ПЭР) за 1900 — 2000 гг. характерно следующее: за первые 40 лет этого столетия ( 1900 — 1940 гг.) потребление ПЭР увеличилось в 3 5 раза, за последующие 30 лет ( 1940 — 1970 гг.) — еще в 3 55 раза и в последние 30 лет ( 1970 — 2000 гг.) — в 1 8 раза.
Мировое потребление первичных источников энергии и его структура ( млн т у.т. / %. |
Неуклонной тенденцией мирового потребления первичных энергоресурсов является изменение его структуры в сторону роста доли высокоэффективных источников энергии — нефти и газа при снижении доли угля.
Несмотря на большое разнообразие первичных энергоресурсов и видов вырабатываемой энергии, энергетика бывшего СССР развивалась планомерно в сочетании с топливной базой как единый топливно-энергетический комплекс.
Основу топливно-энергетического баланса СССР составляют первичные энергоресурсы, к которым относится органическое топливо — твердые горючие ископаемые, нефть и природный газ.
Энергетические ресурсы Российской Федерации
1.1 Состав ТЭК России
1.2 Роль и значение ТЭК для экономики и внешней торговли России
2. Современная энергетическая политика России
2.1 Проблемы и угрозы энергетической безопасности России
2.2 Энергетическая безопасность и энергетическая политика России
Заключение
Список источников
В энергетическом секторе мирового хозяйства ведущую роль играют топливно-энергетические ресурсы — нефть, нефтепродукты, природный газ, каменный уголь, энергия (ядерная, гидроэнергия).
Среди топливно-энергетических ресурсов особое место занимают нефть и природный газ. Эта группа товаров сохраняют роль лидеров среди прочих товарных групп в международной торговле, уступая только продукции машиностроения.
Россия играет ключевую роль на мировом рынке энергетических ресурсов.
Наша страна выступает одним из гарантов общей энергетической безопасности и стабильности мира в долгосрочной перспективе, т.к. доля России в мировом производстве нефти более 12%, природного газа около 30%, угля около 7%. Суммарно на Россию приходится 10,5% производства первичной энергии.
Для самой России топливно-энергетический комплекс (ТЭК) приносит более 50% доходов федерального бюджета.
Также сегодня ТЭК обеспечивает 25% валового внутреннего продукта и 30% объема промышленного производства в стране. Темпы добычи нефти и газа в России все нарастают, так добычи природного газа в России к 2010 г. может составить 645-665 млрд. м³., а к 2020 г. возрасти до 710-730 млрд. м³. А по другим прогнозам она напротив может упасть на 30-50%.
В настоящее время, в силу сырьевой ориентации российской экономики наличие ТЭР стало основой успешного развития регионов РФ, обладающих ими.
С ними напрямую связано благосостояние всех граждан России, такие проблемы, как безработица и инфляция. Возросшее значение ТЭР в развитии нашей страны обусловило пристальный интерес к ним со стороны общества и правительства, а появившиеся в последние десятилетия проблемы отрасли становятся проблемами каждого гражданина России.
Эффективная энергетическая политика для России имеет стратегическое значение, отсюда и высока актуальность данной темы.
Цель работы — анализ современного состояния энергетического сектора и рассмотрение энергетической политики России.
Задачи:
Определить роль и значение энергетического сектора для России;
Проанализировать современное использование энергетических ресурсов и определить проблемы связанные с их использованием;
Рассмотреть основные направления перспективного развития энергетической политики России.
В настоящее время энергетическая безопасность России признана одним из приоритетов национальной политики.
Появились специализированные публикации и нормативные документы по проблеме. Для написания этой работы использовались такие труды как: «Энергетика России», 2008; «Энергетическая безопасность России», 2004; «Реформирование энергетики и энергетическая безопасность», 2006 и другие работы.
При написании работы использовались последние статистические данные Госкомстата РФ, аналитического центра «Минерал», а так же Федерального агентства по недропользованию РФ.
Топливно-энергетические ресурсы (ТЭР)
Определяющими в энергетике и во всем топливно-энергетическом комплексе (ТЭК) являются топливно-энергетические ресурсы (ТЭР), перерабатывающие эти ресурсы предприятия, энергетические комплексы, включающие выработку электрической и тепловой энергии, и передачу (транспорт) потребителям этих двух видов энергии.
Как видно из рис. 1, невозобновляемыми источниками энергии являются газ, нефть, уголь и сланцы. Оценка извлекаемых запасов органического топлива в мире производится в зависимости от возможностей геологоразведки и отыскания новых месторождений этого топлива.
Так доля извлекаемого расходуемого органического топлива в мире в 2001 г. оценивалась следующим образом:
- уголь — 2281 т.у.т. (тонн условного топлива), 25% мирового потребления энергоресурсов;
- нефть — 3467 т.у.т., 38 % мирового потребления энергоресурсов;
- газ — 2189 т.у.т., 24 % мирового потребления энергоресурсов;
- всего 7937 млн т.у.т. — 86 % мирового потребления энергоресурсов.
При уровне мировой добычи девяностых годов (1993-1999 гг.) теоретически запасов угля хватит на 1500 лет, нефти — на 250 лет, газа — на 120 лет (в 1990 г. эти величины соответственно составляли 1000 лет и 50-60 лет).
Между тем теоретический потенциал только солнечной энергии, поступающей на Землю в течение года, превышает все извлекаемые запасы органического топлива в 10…20 раз, а экономический потенциал возобновляемых источников энергии на 2000 г. оценивается 20 млрд. т.у.т., что более чем в 2 раза превышает объем годовой добычи всех видов органического топлива.
Другие статьи по данной теме:
- Энергетика как система
- Основные тенденции в потреблении углеводородного сырья
- Стратегия мирового развития энергетики. Потребление топливно-энергетических ресурсов (ТЭР)
- Международные обязательства России по снижению вредных выбросов
- Киотский протокол
- Нормативы вредных выбросов
Основные типы электростанций
Все электрические станции таблица ниже классифицирует в первую очередь по источникам используемой энергии.
Среди них можно выделить следующие:
- Тепловые (ТЭС). Работают на природном топливе, а основные типы электростанций могут быть конденсационными (КЭС) и теплофикационными (ТЭЦ). Первые вырабатывают только электричество, а вторые – электроэнергию и теплоту.
- Гидравлические – ГЭС и гидроаккумулирующие – ГАЭС, функционирующие за счет энергии воды, падающей высоты.
- Атомные – АЭС, работающие на ядерном топливе.
- Дизельные – ДЭС. Бывают стационарными или мобильными. Существуют мини-электростанции малой мощности, используемые в частном секторе.
- Солнечные, ветровые, приливные и геотермальные электростанции известны как альтернативные источники электроэнергии, работающим с естественными силами природы. Они имеют ряд недостатков, связанных с климатическими условиями и другими факторами.
Каждая перечисленная электростанция представляет собой традиционные или альтернативные виды энергетики. В первом случае электричество вырабатывается на тепловых, гидро- и атомных установках. На ТЭС вырабатывается примерно 70-75% всей электроэнергии, поэтому они размещаются в местах с высоким энергопотреблением и большим количеством природных ресурсов.
ГЭС привязаны к полноводным рекам, протекающим в равнинной или горной местности. АЭС строятся в местах с большим потреблением электроэнергии, при недостатке других видов энергоресурсов. Для того чтобы понять их роль и место в общей энергетической системе, следует рассмотреть более подробно типы электростанций, используемых в России.
Тепловые электрические станции – ТЭС
На тепловых электростанциях России производится примерно 70% всей электрической энергии. Они работают на мазуте, газе, угле, а в определенных местностях используется торф и сланцы.
Все ТЭС можно условно разделить на два основных вида. Первый вариант является так называемым паротурбинным, где первичным двигателем служит паровая турбина. Эти устройства могут быть конденсационными (КЭС), вырабатывающими только электроэнергию, и теплоэлектроцентралями (ТЭЦ), производящими не только электричество, но и тепло. Коэффициент полезного действия ТЭЦ составляет 60-70%, а у КЭС этот показатель равен 30-40%. Основным недостатком тепловых станций считается их обязательная привязка к потребителям тепла.
Положительных качеств у тепловых электростанций значительно больше. Они свободно размещаются на всех территориях, где имеются природные ресурсы и не подвержены сезонным колебаниям погодных условий. Однако, используемое топливо является не возобновляемым, а сами установки негативно влияют на экологическую обстановку. Российские ТЭС не имеют достаточно эффективных систем очистки выходящих газов от вредных и токсичных веществ. Более экологичными считаются газовые установки, но трубопроводы, проложенные к ним, наносят непоправимый вред природе.
Электростанции, расположенные в европейской части Российской Федерации, работают в основном на мазуте и природном газе, а в восточных районах они располагаются возле месторождений угля, добываемого открытым способом. Большинство установок относится к государственным районным электростанциям – ГРЭС, входящим в Единую энергосистему страны.
Дизельные электростанции
Для работы дизельных электростанций, которые называют ДЭС, используются различные виды жидкого топлива. Основой системы является дизель-генератор, включающий в себя дизельный двигатель, электрический генератор, системы смазки и охлаждения, пульт управления.
Данные установки применяются как альтернативные в отдаленных районах, где являются основными источниками электроэнергии. Как правило, подведение стационарных ЛЭП в такие места экономически не выгодно. Кроме того, дизельные электростанции служат аварийными или резервными источниками питания, когда потребители не должны отключаться от электроснабжения.
Виды дизельных электростанций могут быть стационарными (4-5 тысяч кВт) и мобильными (12-1000 кВт). Благодаря небольшим размерам, они могут размещаться в небольших зданиях и помещениях. Эти станции постоянно готовы к пуску, а сам процесс запуска не занимает много времени. Большинство функций установок автоматизировано, а остальные легко переводятся в автоматический режим. Основным недостатком дизельных станций является привозное горючее и все мероприятия, связанные с его доставкой и хранением.
Вторичные энергетические ресурсы
Выполнил: Фёдоров А.В.
Внутренние энергетические ресурсы промышленности делятся на три основные группы:
1. Горючие.
2. Тепловые.
3. Избыточного давления.
Одним из весьма перспективных направлений использования тепла слабо нагретых вод является применение так называемых тепловых насосов, работающих по тому же принципу, что и компрессорный агрегат в домашнем холодильнике. Тепловой насос отбирает тепло от сбросной воды и аккумулирует тепловую энергию при температуре около 90 °С, иными словами, эта энергия становится пригодной для использования в системах отопления и вентиляции.
Примером применения этих ресурсов может служить использование избыточного давления доменного газа в утилизационных бес компрессорных турбинах для выработки электрической энергии.
Твёрдое жидкое, газообразное топливо или электроэнергия для обслуживания технологических высоко температурных процессов (промышленные печи) и охлаждающая ввода.
Газ и жидкое топливо для обслуживания технологических силовых процессов (с двигателями внутреннего сгорания воздуходувных, компрессорных и других агрегатов) и охлаждающая вода.
Горючее и технологическое сырьё (в предприятиях металлургической, деревообрабатывающей, текстильной, пищевой и других отраслях промышленности).
Пар для обслуживания технологических силовых (в молотовых, прессовых и штамповочных агрегатах) и нагревательных процессов.
Горячая вода для бытового теплопотребления
Электроэнергия, обслуживающая силовые, термические и осветительные процессы.
ВЭР имеются также на электрических станциях и представляют собой тепловые отходы или потери тепла, получаемые в процессе энергопроизводства.
На гидроэлектростанциях такими тепловыми отходами являются только тепловыделения в гидрогенераторах станциях.
Использование вторичных энергетических ресурсов в промышленности
Подобные энергетические ресурсы можно использовать для удовлетворения потребностей в топливе и энергии либо непосредственно (без изменения вида энергоносителя), либо путём выработки тепла, электроэнергии, холода и механической энергии в утилизационных установках. Большинство горючих ВЭР употребляются непосредственно в виде топлива, однако некоторые из них требуют специальных утилизационных установок. Непосредственно применяются также некоторые тепловые ВЭР (например, горячая вода систем охлаждения для отопления).
Горючие газы – отходы основного производства: Доменный и коксовый газы практически используются полностью. Использование ферросплавного газа возможно для технологических (подогрев материалов, частичное предварительное восстановление сырья) и теплофикационных целей, сжиганием в котельной. Конвертерный газ частично используют в охладителях, но полное использование его ещё не решено.
Теплота охлаждающей воды: В установках испарительного охлаждения выход пара 0,1 т/т чугуна и 0,2 т/т мартеновской стали. Все технологические вопросы испарительного охлаждения печей решены и требуется максимально широкое внедрения способа в производство. Необходимо улучшить технические решения по унификации охлаждаемых элементов, повышению давления пара, улучшить контроль за плотностью схем охлаждения, усовершенствовать автоматику утилизирующих установок. Необходимо распространение опыта чёрной металлургии в химическую промышленность, машиностроение и т. д.
Большие резервы по эффективному использованию ВЭР имеются и на предприятиях цветной металлургии.
Эффективным в цветной металлургии является использование тепла уходящих дымовых газов для подогрева воздуха, поступающего в печи для сжигания топлива. Это экономит топливо, улучшает процесс его горения и, кроме того, повышает производительность печи. Однако с дымовыми газами уносится ещё значительное количество тепловой энергии, которая может использоваться в котлах-утилизаторах для выработки пара.
По мере увеличения затрат на добычу топлива и производства энергии возрастает необходимость в более полном использовании их при преобразовании в виде горючих газов, тепла нагретого воздуха и воды. Хотя утилизация ВЭР нередко связана с дополнительными капитальными вложениями и увеличением численности обслуживающего персонала, опыт передовых предприятий подтверждает, что использование ВЭР экономически весьма выгодно.
Таким образом, повышение уровня утилизации вторичных энергетических ресурсов обеспечивает не только значительную экономию топлива, капитальных вложений и предотвращения загрязнения окружающей среды, но и существенное снижение себестоимости продукции нефтеперерабатывающих и нефтехимических предприятий.
Структура энергетики как системы
Энергетика, как система, включает в себя весь топливно-энергетический комплекс. В широком смысле для энергоресурсов и энергоносителей всех видов она предусматривает их получение, переработку, преобразование, транспортирование, использование.
Различают четыре стадии трансформации первичных энергоресурсов.
- Извлечение, добыча или прямое их использование.
- Переработка (облагораживание) до состояния, пригодного для преобразования или использования.
- Преобразование связанной энергии переработанных ресурсов в электрическую — на тепловых, атомных и гидравлических электростанциях (ТЭС, АЭС, ГЭС) и в тепловую — на теплоэлектроцентралях и котельных (ТЭЦ и К).
- Использование энергии.
Изложенные выше определения хорошо иллюстрируются структурной схемой (рис.1).
Рис.1. Структурная схема энергетики, как системы
Использование низкопотенциальной энергии ВЭР
К вторичным низко- (от +5 до +30 °С) и среднепотенциальным источникам энергии (до 400 °С) можно отнести:
- сбросную горячую воду от различного оборудования и агрегатов, использующих ее в качестве хладагента;
- продуктовые потоки (газы, пар и др.);
- уходящие газы средней температуры;
- вторичный и отработанный пар;
- конденсат и т. п.;
- тепло земли и водного бассейна (см. раздел. 2).
Как показывает отечественная и мировая практика, наиболее полное и экономически эффективное использование средне- и низкопотенциальных ВЭР промышленного производства осуществимо, в первую очередь, с помощью тепловых насосов, термокомпрессоров и трансформаторов теплоты.
Применение теплонасосных установок и трансформаторов для утилизации тепловых ВЭР и других местных низкотемпературных источников теплоты позволяет на 20–60 % снизить расходы топлива. Как показано в разделе 2 эти системы используют не только тепловые отходы производства, но и теплоту окружающего воздуха, грунта, воды рек, озер и других водоемов, сточных вод и коммунальных стоков и др. (рис. 17).
Рис. 17. Схема использования теплоты коммунальных стоков с помощью теплового насоса
Низкопотенциальные тепловые отходы (отработанный и вторичный пар, теплый влажный воздух, конденсат и другие виды ВЭР) удобнее и экономичнее улавливать и преобразовывать с помощью термотрансформаторов (трансформаторов теплоты). Термотрансформаторы, кроме работы в режиме теплового насоса, могут повышать давление пара (повышающий термотрансформатор), «расщеплять» поток пара на потоки, имеющие бόльшее и меньшее давление (расщепляющий термотрансформатор), получать электроэнергию, используя низкопотенциальное тепло, и даже электроэнергию и холод без подвода тепла (рис. 18).
Рис. 18. Схема адсорбционного термотрансформатора
Пароструйные термотрансформаторы (эжекторы). Аналогично турбодетандерам, принцип работы термотрансформаторов основан на использовании кинетической энергии потока пара. Пар повышенного давления поступает в сопло, расширяется, выходит из него с большой скоростью и, двигаясь вдоль оси пароструйного аппарата, создает эжектирующий эффект (рис. 19). Благодаря инжекции в аппарат засасывается пар низкого давления, сжимается эжектором, и к потребителю уже поступает пар среднего давления.
Рис. 19. Схема пароструйного термотрансформатора
Одно из эффективных направлений утилизации теплоты ВЭР – производство холода для предприятий, технологические процессы которых требуют его при различных температурах охлаждения. Наличием на предприятиях достаточно большого количества неиспользуемых ВЭР в виде пара, горячей воды, факельных сбросов, горячих газов и т. п. позволяет вырабатывать холод с помощью абсорбционных холодильных машин (рис. 20).
Рис. 20. Схема работы (а) и общий вид (б) адсорбционной машины
В составе абсорбционной холодильной машины роль компрессора выполняется системой абсорбер-генератор. При этом процессы, связанные с работой компрессора, осуществляются с помощью растворов, состоящих из двух или трех компонентов. В холодильной технике это, как правило, раствор (бинарный), состоящий из двух компонентов с различными температурами кипения при одинаковом давлении. Один компонент, с более низкой температурой кипения, является холодильным агентом, другой – абсорбентом (поглотителем).
Наибольшее применение в холодильной технике получили абсорбционные холодильные машины, работающие на растворах водааммиак (водоаммиачные), вода-бромистый литий (бромистолитиевые). В водоаммиачных холодильных машинах холодильным агентом является аммиак, в бромистолитиевых – вода.
Ядерная энергия
Ядерная энергия
Международное агентство по атомной энергии оценивает оставшиеся ресурсы урана равным 2500 ZJ. Это предполагает использование реакторов-размножителей , которые способны производить больше делящегося материала, чем они потребляют. По оценкам МГЭИК, в настоящее время доказанные экономически извлекаемые запасы урана для реакторов с прямоточным топливным циклом составляют всего 2 НДж. Окончательно извлекаемый уран оценивается в 17 НДж для прямоточных реакторов и 1000 НДж для реакторов репроцессинга и реакторов-размножителей на быстрых нейтронах.
Ресурсы и технологии не ограничивают способность ядерной энергетики способствовать удовлетворению спроса на энергию в 21 веке. Однако политические и экологические опасения по поводу ядерной безопасности и радиоактивных отходов начали ограничивать рост этого энергоснабжения в конце прошлого века, особенно из-за ряда ядерных аварий . Опасения по поводу распространения ядерного оружия (особенно плутония, производимого реакторами-размножителями) означают, что международное сообщество активно противодействует развитию ядерной энергетики такими странами, как Иран и Сирия .
Хотя в начале 21 века уран является основным ядерным топливом во всем мире, другие виды топлива, такие как торий и водород, исследуются с середины 20 века.
Запасы тория значительно превышают запасы урана, и, конечно, водород в изобилии. Многие также считают, что его легче получить, чем уран . В то время как урановые рудники закрыты под землей и поэтому очень опасны для горняков, торий добывается из открытых карьеров, и, по оценкам, его примерно в три раза больше, чем урана в земной коре.
С 1960-х годов торий сжигали на многочисленных объектах по всему миру .
Термоядерная реакция
Альтернативы для производства энергии путем синтеза водорода изучаются с 1950-х годов. Никакие материалы не могут выдерживать температуры, необходимые для воспламенения топлива, поэтому его необходимо ограничивать методами, не использующими никаких материалов. Магнитное и инерционное удержание являются основными альтернативами ( Cadarache , термоядерный синтез с инерционным удержанием ), оба из которых являются горячими темами исследований в первые годы 21 века.
Сила термоядерного синтеза — это процесс, приводящий в движение солнце и другие звезды. Он генерирует большое количество тепла за счет плавления ядер изотопов водорода или гелия, которые могут быть получены из морской воды. Теоретически тепло можно использовать для производства электроэнергии. Температура и давление, необходимые для поддержания плавления, делают процесс очень трудным для контроля. Теоретически Fusion может поставлять огромное количество энергии при относительно небольшом загрязнении окружающей среды. Хотя и Соединенные Штаты, и Европейский союз, а также другие страны поддерживают исследования в области термоядерного синтеза (например, инвестируют в установку ИТЭР ), согласно одному отчету, неадекватные исследования остановили прогресс в исследованиях в области термоядерного синтеза за последние 20 лет.
Как разные страны мира выполняют планы по энергопереходу
Страны по всему миру поставили себе амбициозные задачи по переходу на возобновляемую энергию. Цели стали частью и Парижского соглашения — к 2030 году решения с нулевым выбросом углерода могут быть конкурентоспособными в секторах, на которые приходится более 70% глобальных выбросов. Сделать это планируется за счет энергетического перехода — процесса замены угольной экономики возобновляемой энергетикой. В 2020 году, несмотря на пандемию и экономическую рецессию, многие города, страны и компании продолжали объявлять или осуществлять планы по декарбонизации.
Как государству продвигать экологическую повестку
Ожидается, что в 2021 году Индия внесет самый большой вклад в развитие возобновляемой энергетики. Здесь планируют запустить ряд ветряных и солнечных проектов.
В Евросоюзе также прогнозируется скачок в приросте мощностей в 2021 году. Здесь даже в условиях пандемии не забывают о Green Deal — крупнейшей в истории ЕС коррекции экономического курса. Цель проекта — сформировать в ЕС углеродно-нейтральное пространство к 2030 году. Для этого планируется сократить на 40% объем выбросов парниковых газов от уровня 1990 года и увеличить долю энергии из возобновляемых источников до 32% в общей структуре энергопотребления. Как посчитала Еврокомиссия, достичь этих задач можно будет с помощью ежегодных инвестиций в размере €260 млрд. Доля ВИЭ в энергосистеме ЕС также постоянно растет. Так, около 40% электроэнергии в первом полугодии 2020 года в ЕС было произведено из возобновляемых источников.
Пока же в лидерах инвестиций в развитие возобновляемой энергетики — Китай, США, Япония и Великобритания. С тех пор, как BloombergNEF начал отслеживать эти данные, глобальные инвестиции в ветровую и солнечную энергетику, биотопливо, биомассу и отходы, малую гидроэлектроэнергетику увеличились почти на порядок. В годовом выражении вложения в чистую энергию выросли с $33 млрд до более чем $300 млрд за 20 лет.
Китай за десять лет стал главным производителем оборудования для возобновляемой энергетики. В первую очередь, речь идет о солнечных панелях. Семь из десяти крупнейших мировых производителей солнечных батарей — это китайские компании. В целом развитие технологий удешевило стоимость строительства новых объектов ВИЭ. Это приближает планы Китая стать углеродно нейтральным к 2060 году.
Ставка на солнце и уголь: два лица энергетики Китая
Серьезных шагов в сторону энергоперехода ожидают и от президента США Джо Байдена. Он не только вернул страну в Парижское соглашение, но и заявил о том, что намерен добиться чистых выбросов парниковых газов и перехода на 100% экологичной энергии к 2050 году.
Также к 2050 году планируют использовать только ВИЭ Япония, Южная Корея, Новая Зеландия и . Прошедший 2020 год уже стал самым экологичным для энергосистемы Великобритании со времен промышленной революции. Страна целых 67 дней смогла обходиться без угля. От традиционных источников энергии Британия планирует отказаться уже к 2025 году.
Активно развиваются ВИЭ в Испании — по прогнозам, сектор только солнечной энергетики в стране будет расти примерно вдвое быстрее, чем в Германии.
В 2020 году Шотландия получила 97% электроэнергии из возобновляемых источников. С помощью произведенной «зеленой» энергии получилось обеспечить электронужды более чем 7 млн домохозяйств. Шотландия планирует стать углеродной нейтральной уже к 2030 году.
Этот же год выбран временем полного отказа от традиционной энергетики для Австрии, а Саудовская Аравия запланировала к 2030 году получать 50% электроэнергии от ВИЭ.
Национальные цели по доле ВИЭ среди источников энергии
(Фото: REN21)
Полная версия отчета Renewables 2020 в формате PDF (см. стр. 57)
Что такое электростанция
Любая электростанция представляет собой целый энергетический комплекс, включающий в себя различные установки, аппаратуру и оборудование, необходимые для получения, преобразования и транспортировки электроэнергии. Все эти компоненты размещаются в специальных зданиях и сооружениях, расположенных компактно на общей территории. Независимо от типа, они входят в состав Единой энергосистемы, созданной с целью эффективно использовать мощность электростанции, обеспечивая бесперебойное энергоснабжение потребителей.
Принцип работы электростанций и их сопутствующих объектов основан на вращении вала генератора, который является основным элементом системы. Его основные функции заключаются в следующем:
- Обеспечение стабильной продолжительной работы параллельно с другими энергетическими системами, снабжение энергией собственных автономных нагрузок.
- Возможность мгновенного реагирование на наличие или отсутствие нагрузки, соответствующей его номиналу.
- Выполняет запуск двигателя, обеспечивающего работу всей станции.
- Вместе со специальными устройствами осуществляет функцию защиты.
Отличительными чертами каждого генератора являются формы и размеры, а также источник энергии, используемый для вращения вала. Кроме генератора, электростанция состоит из турбин и котлов, трансформаторов и распределительных устройств, средств коммутации, автоматики и релейной защиты.
В настоящее время получило развитие направления в области компактных установок. Они позволяют обеспечить энергией не только отдельные объекты, но и целые поселки, находящиеся на значительном удалении от стационарных линий электропередачи. В основном, это полярные станции и предприятия по добыче полезных ископаемых. Теперь рассмотрим какие типы установок используются в российской энергетике.
Методы снижения потребления энергетических ресурсов
Во многих индустриальных странах, которые проводят активную политику в области энергосбережения, энергопотребление и внедрение сберегающих технологий жестко контролируется правительством: принимаются нормативы по расходам энергии, выводятся из эксплуатации устаревшие производственные мощности.
В России особое внимание уделяется снижению потребления энергетических ресурсов организациями бюджетной сферы. Для этого Минэкономики к 31 марта 2020 года должен был подготовить методические рекомендации для регионов, согласно которым они, в свою очередь, до 1 июля 2020 года разработали план по снижению потребления воды и энергоресурсов предприятиями, деятельность которых финансируется из государственного бюджета
Благодаря разумному потреблению ресурсов и внедрению сберегающих технологий к 2025 году расходы из бюджета на электроэнергию планируется снизить на 7,7 млрд рублей по сравнению с суммой 2016 года — 107,3 млрд рублей, на теплоснабжение – на 18,4 млрд рублей от 177,5 млрд рублей в 2016-м.
Однако, без четких рекомендаций правительства и нормативной базы органы местного самоуправления не смогут откорректировать все программы энергосбережения по региону в целом. Кроме того, для бюджетных организаций план повышения энергоэффективности означает дополнительные расходы на внедрение систем энергосбережения, а также потери временных и кадровых ресурсов на планирование мероприятий, подбор подрядчиков, контроль внедрения и анализ результатов.