Океаническое течение — ocean current

Обрушение волн

Двигаясь к берегу, при этом натыкаясь на отмели, рифы, острова, волны постепенно растрачивают былую мощь.

Чем дольше расстояние от центра шторма, тем они слабее.

При встрече с мелководьем катящимся водным массам некуда деваться, они движутся наверх.

Период волн уменьшается, они словно сжимаются, замедляются, становятся короче и круче. Так вырастает волна для серфинга.

Наконец, гребни опрокидываются, происходит разрушение или ломка волн. Чем больше перепад глубин, тем круче и выше будет волна!

Она возникает возле рифов, скал, затонувших кораблей, на крутой песчаной отмели.

Рост гребня начинается при глубине, равной половине высоты волны.

Экономическое значение

Знание о поверхностных океанских течениях необходимо для снижения затрат на судоходство, поскольку путешествие с ними снижает расходы на топливо. В эпоху парусных кораблей, приводимых в движение ветром, знание моделей ветра и океанских течений было еще более важным. Хорошим примером этого является течение Агульяс (вниз по восточной части Африки), которое долгое время не позволяло морякам добраться до Индии. В последнее время участники соревнований по парусному спорту со всего мира хорошо используют поверхностные течения для создания и поддержания скорости. Океанские течения также могут быть использованы для выработки электроэнергии на море , при этом районы Японии, Флориды и Гавайев рассматриваются для экспериментальных проектов.

Как движется вода в Океане

Океанические воды находятся в постоянном движении. На поверхности мы чаще всего видим волны (рис. 72). Тот, кому приходилось купаться в море, знает, как приятно качаться на волнах. Это потому, что частицы воды совершают колебательные движения вверх-вниз. Волны обычно образуются под действием ветра и иногда достигают огромных размеров. Чем сильнее ветер, тем выше волны. При приближении к берегу волна становится круче и опрокидывается (разрушается) — это прибой. При волнении вода перемешивается. Это значит, что тепло, кислород, питательные вещества, необходимые живым организмам, лучше распределяются в толще воды.

Если где-то в глубинах Океана происходит сильное подводное землетрясение или извержение вулкана, может образоваться цунами. Это волна, которая движется с огромной скоростью — до 800 км/ч. У берега её высота может достигать нескольких десятков метров. Обрушившись на берег, цунами приносит катастрофические разрушения.

В Океане возникают и горизонтальные перемещения больших масс воды — океанические течения. Об этом знали древние мореплаватели. Протяжённость течений велика — до нескольких тысяч километров. Их ширина достигает десятков и сотен километров, а глубина — сотни метров. Температура воды в течениях обычно отличается от окружающей — она или выше (в тёплых течениях), или ниже (в холодных). На картах тёплые течения в Океане показаны красными стрелками, а холодные — синими. Посмотрите на карту в Приложении на с. 186—188.

Тёплые течения обычно движутся вдоль экватора, а затем поворачивают к северу или к югу — в более холодные области. Холодные течения, наоборот, направлены в сторону экватора. Самое известное тёплое течение — Гольфстрим, а самое холодное — течение Западных Ветров в Южном полушарии.

В прибрежных районах можно наблюдать приливы и отливы. Вода в течение суток то отступает от берега, обнажай большие участки дна, то возвращается. Такие колебания уровня Океана связаны с притяжением океанской воды массой Луны и Солнца. Правда, в некоторых морях приливы и отливы невелики и поэтому малозаметны. В нашей стране они хорошо выражены на берегах Белого и Охотского морей (до 13 м в заливе Пенжинская губа). Самые высокие приливы — в заливе Фан- ди Атлантического океана (Канада) — 18 м.

Океанические течения обычно возникают под воздействием постоянных ветров.

ВОЛНЫ, ОКЕАНИЧЕСКИЕ ТЕЧЕНИЯ, ЦУНАМИ, ПРИЛИВЫ И ОТЛИВЫ — ЭТО ВИДЫ ДВИЖЕНИЯ ВОДЫ В ОКЕАНЕ. ОНИ ПРОИСХОДЯТ ПОД ДЕЙСТВИЕМ ВНЕШНИХ И ВНУТРЕННИХ СИЛ ЗЕМЛИ.

Запомните

Солёность и температура — свойства воды в Океане. Айсберг. Волны. Цунами. Океанические течения. Приливы и отливы.

Откройте атлас

1. Найдите на карте океанов в Приложении течения: Гольфстрим, Западных Ветров, Лабрадорское, Перуанское, Северо-Атлантическое. Нанесите их на контурную карту (красным цветом тёплые течения, синим — холодные).

Это я знаю

2. Почему вода в Океане солёная?

3. Почему в Красном море солёность больше, чем в Балтийском?

4. Почему и как меняется температура воды в Мировом океане?

5. Чем обусловлено движение воды в Океане?

6. Почему образуются приливы и отливы?

7. Солёность воды измеряется: а) в граммах; б) в промилле; в) в сантиметрах.

8. Средняя солёность в Океане: а) 42 %0; б) 35 %о\ в) 1 %о.

9. От экватора к полюсам температура воды в поверхностном слое: а) повышается; б) понижается.

10. Волны в Океане возникают под воздействием: а) силы тяжести; б) ветра.

Это я могу

11. Систематизируйте свои знания о течениях по плану: 1. Каково значение течений для нашей планеты? 2. Как образуется течение? 3. Какие бывают течения? 4. Какие самые крупные течения? Результаты оформите в виде таблицы.

12. Подсчитайте, сколько соли нужно растворить в 1 л воды, чтобы получить солёность воды, как в Красном море.

13. Морские течения позволили англичанам добраться до Австралии (вспомните роман Ж. Верна «Дети капитана Гранта»), Определите по карте, какие течения связывают Англию и Австралию.

Это мне интересно

14. Вспомните, какие из ваших любимых героев потерпели кораблекрушение. Какие знания о природе помогли им спастись и выжить?

Сомалийское, 75 км/сутки

Сомалийское течение находится в Индийском океане. Название свое получило в честь острова Сомали, мимо которого оно несет свои воды.

Течение не постоянное, так как вызвано муссонными ветрами, и меняет свое направление в течение года. Летом под воздействием муссонов течет на северо-восток, воды постоянно поднимаются с глубины, порой понижая температуру до 13 градусов, но в среднем она держится на отметке 21-25 градусов. Зимой же ветер меняет направление, перебивает течение и разворачивает его на юго-запад.

Вода практически не поднимается из нижних слоев, и температура колеблется около отметки в 26 градусов. Средняя скорость вод – 1,8 км/ч.

Обзор всех указанных выше причин течений

Указанные выше причины, возбуждающие передвижение воды в океане, сводятся к трем условиям: влиянию разностей давления атмосферы, влиянию разностей плотности морской воды и влиянию ветра. Влияние вращения Земли на оси и влияние берегов могут только видоизменять характер уже существующих течений, но сами по себе два последние обстоятельства никаких движений воды возбудить не могут.

Влияние разностей давления атмосферы никаких значительных течений возбудить не может. Остаются две следующие причины: разности плотностей морской воды и ветер.

Разности плотностей в океане всегда существуют, а следовательно, всегда стремятся привести частицы воды в движение. При этом разности плотностей действуют не только в горизонтальном направлении, но и в вертикальном, возбуждая конвекционные течения.

Ветер, согласно современным взглядам, не только обуславливает возникновение поверхностных течений, но также служит причиной происхождения течений и на разных глубинах до самого дна. Таким образом, значение ветра, как возбудителя течений, в последнее время расширилось и стало более всеобщим.

Материал, которым располагает океанография, по распределению плотностей в разных местах и на разных глубинах в океанах еще очень мал и недостаточно точен; но на основании его уже можно сделать попытку определить численно (по способу Бьеркнеса) те скорости течений, какие разность плотностей может возбудить в поверхностных слоях океанов.

На основании меридионального разреза через Северное Экваториальное течение Атлантического океана было определено, что существующая между 10 и 20° с. ш. разность плотностей могла бы произвести течение со скоростью 5—6 морских миль в 24 часа. Между тем наблюдаемая в этом месте средняя суточная скорость Экваториального течения около 15—17 морских миль. Если вычислить скорость того же Экваториального течения, соответствующую только влиянию ветра (принимая скорость NE пассата в 6,5 м в секунду), то получится суточная скорость течения в 11 морских миль. Сложив эту величину с 5—6 морскими милями суточной скорости, обусловленной разностью плотности, получим наблюдаемые 16—17 морских миль в сутки.

Приведенный пример показывает, что ветер, по-видимому, оказывается более важной причиной возбуждения течений на «поверхности океана, нежели разность плотностей. Подобный же пример для Балтийского моря еще более убедителен, он показывает, что даже и там, где на малых расстояниях разности плотностей очень велики, все-таки влияние ветра имеет большее значение для возникновения течений (см

стр. 273, течения Балтийского моря)

Подобный же пример для Балтийского моря еще более убедителен, он показывает, что даже и там, где на малых расстояниях разности плотностей очень велики, все-таки влияние ветра имеет большее значение для возникновения течений (см. стр. 273, течения Балтийского моря).

Наконец, самое существование смены муссонных течений, а также некоторое передвижение и изменение течений тропической полосы во всех океанах в зиму и лето того же полушария показывают еще раз большое значение ветров для существующей системы течений. Перемещение метеорологического экватора с временами года, конечно, сказывается на распределении температуры воды (см. главу о температуре), а следовательно, и на распределении плотности воды, но эти изменения очень невелики; изменения же в системе ветров, вызываемых перемещением метеорологического экватора, очень значительны.

Таким образом, из этих трех причин течений надо признать, что ветер представляет одну из важнейших. На это указывают многие обстоятельства; несомненно, что если бы ветер не существовал, то возникшие в океанах системы течений очень значительно отличались бы от существующих.

Тут будет уместно указать, что в океане существует много течений с водами совершенно различных плотностей, идущих рядом, и, несмотря на то, между ними, однако, вовсе не образуется обмена воды.

Наконец, все течения идут по ложу, образованному водами океана, всегда обладающими совершенно иными физическими свойствами, нежели воды самих течений; однако и при этих условиях течения продолжают существовать и двигаться, не смешивая немедленно своих вод с соседними. Конечно, такое смешение вод их происходит, но оно совершается очень медленно и в значительной мере обуславливается образованием водоворотов при движении одного слоя воды по другому.

Виды морских волн

Волны могут проходить огромные расстояния, не изменяя формы и практически не теряя энергии, долго после того, как вызвавший их ветер утихнет. Разбиваясь о берег, морские волны высвобождают огрмную энергию, накопленную за время странствия. Сила непрерывно разбивающихся волн по-разному изменяет форму берега. Разливающиеся и накатывающиеся волны намывают берег и поэтому называются конструктивными. Волны, обрушивающиеся на берег, постепенно разрушают его и смывают защищающие его пляжи. Поэтому они называются деструктивными.

Размытый берег прибрежного посёлка

Низкие, широкие, закругленные волны вдали от берега называются зыбью. Волны заставляют частички воды описывать кружки, кольца. Размер колец уменьшается с глубиной. По мере приближения волны к покатому берегу частицы воды в ней описывают все более сплющенные овалы. Приближаясь к берегу, морские волны больше не могут замкнуть свои овалы, и волна разбивается. На мелководье частицы воды больше не могут замкнуть свои овалы, и волна разбивается. Мысы образованы из более твердой породы и разрушаются медленнее, чем соседние участки берега. Крутые, высокие морские волны подтачивают скалистые утесы у основания, образуя ниши. Утесы порой обрушиваются. Сглаженная волнами терраса — это все, что остается от разрушенных морем скал. Иногда вода поднимается по вертикальным трещинам в скале до вершины и вырывается на поверхность, образуя воронку. Разрушительная сила волн расширяет трещины в скале, образуя пещеры. Когда волны подтачивают скалу с двух сторон, пока не соединятся в проломе, образуются арки. Когда верх арки падает в море, остаются каменные столбы. Их основания подтачиваются, и столбы обрушиваются, образуя валуны. Галька и песок на пляже — это результат эрозии.

Деструктивные волны постепенно размывают берег и уносят песок и гальку с морских пляжей. Обрушивая всю тяжесть своей воды и смытого материала на склоны и обрывы, волны разрушают их поверхность. Они вжимают воду и воздух в каждую трещину, каждую расщелину, часто с энергией взрыва, постепенно разделяя и ослабляя скалы. Отколовшиеся обломки скал используются для дальнейшего разрушения. Даже самые твердые скалы постепенно уничтожаются, и суша на берегу изменяется под действием волн.
Волны могут разрушать морской берег с поразительной быстротой. В графстве Линкольншир, в Англии, эрозия (разрушение) надвигается со скоростью 2 м в год. С 1870 г., когда был построен самый большой в США маяк на мысе Гаттерас, море смыло пляжи на 426 м в глубину побережья.

Внутренние волны

Кроме поверхностных волн, в океане бывают и внутренние волны. Они
образуются на границе раздела между двумя слоями воды разной плотности. Эти волны перемещаются медленнее поверхностных, но могут иметь большую амплитуду.
Обнаруживают внутренние волны по ритмичным изменениям температуры на разных глубинах океана. Явление внутренних волн изучено пока недостаточно. Точно лишь
установлено, что на границе между слоями с меньшей и большей плотностью возникают волны. Ситуация может выглядеть так: на поверхности океана полный
штиль, а на какой-то глубине бушует шторм, по длине внутренние волны разделяются, как и обычные поверхностные, на короткие и длинные. У коротких волн
длина намного меньше глубины, а у длинных, наоборот, длина превышает глубину.

Причин для появления внутренних волн в океане много. Границу раздела между слоями с разной плотностью может вывести из равновесия и
движущееся крупное судно, и поверхностные волны, и морские течения.

Длинные внутренние волны проявляют себя, например, в
Гибралтарском проливе таким образом: слой воды, являющийся водоразделом между более плотной («тяжёлой») и менее плотной («лёгкой») водой сначала
медленно, часами поднимается, а затем неожиданно падает почти на 100 метров. Такая волна очень опасна для подводных лодок. Ведь если подводная лодка
опустилась на определённую глубину, значит она уравновесилась слоем воды определённой плотности. И вдруг, неожиданно под корпусом лодки возникает слой
менее плотной воды! Лодка немедленно проваливается в этот слой и опускается до той глубины, где менее плотная вода сможет её уравновесить. Но глубина может
оказаться такой, где давление воды превысит прочность корпуса подводного корабля, и он будет в считанные минуты раздавлен.

По заключению американских специалистов, расследовавших причины гибели атомной субмарины «Трешер» в 1963 году в Атлантическом океане,
этот подводный крейсер оказался именно в такой ситуации и был раздавлен огромным гидростатическим давлением. Свидетелей трагедии, естественно, не осталось, но
версия о причине катастрофы подтверждается результатами наблюдений, проведённых научно-исследовательскими кораблями в районе гибели субмарины. А наблюдения эти
показали, что здесь нередко возникают внутренние волны высотой более 100 метров.

Почему на море волны

Морская стихия завораживает и не оставляет никого равнодушным. Море и волны — картина, на которую можно смотреть вечно. Недаром известное полотно художника И.К. Айвазовского «Девятый вал» надолго притягивает и не отпускает взгляд.

«Девятый вал»

Морские волны возникают, когда соединяются (сцепляются) между собой частицы воздуха и воды. Сначала воздух скользит по воде, вызывая зыбь, а позже начинают вздыматься тонны воды.

Колебания водной поверхности на море или океане через определенные интервалы времени принято называть волнами.

Гребень — самая высокая точка волны, а место ее образования — подошва. Временной промежуток от одного гребня до другого или от подошвы до подошвы — волновой период. Расстояние между двумя гребнями называют длиной волны.

Существует немало объяснений причин, из-за которых образуются волны в морях и океанах:

  • скачки давления в атмосфере;
  • приливы, отливы;
  • землетрясения, происходящие в морских глубинах;
  • извержения вулканов;
  • движение судов;
  • ветер, дующий с огромной силой.

Чтобы представить, как появляются морские волны, необходимо понимать, что вода начинает колебаться только под физическим воздействием, принудительно.

Что перемещает ветер

Любая новая волна поднимает, затем опускает водные массы.

Интересный факт: частицы воды движутся не по горизонтали, а по неправильной формы кругу или эллипсу, перпендикулярному фронту волны.

На самом деле траектория движения частиц воды напоминает петли: на интенсивное вращение «водяного колеса» накладывается слабое поступательное движение в сторону ветра.

Так формируется профиль волны: ее наветренный склон пологий, а подветренный – крутой.

Из-за этого гребни заваливаются, образуя пену.

Перемещается во время ветра не масса воды, а профиль волны. Так, потерянный серфером борд будет качаться вперед и назад, вверх и вниз, медленно двигаясь в сторону берега.

Волны-убийцы

Волны-убийцы (Блужда́ющие во́лны, волны-монстры, freak wave — аномальная волна) — гигантские волны, возникающие в океане, высотой более 30 метров, обладают несвойственным для морских волн поведением.

Еще каких-то 10-15 лет назад ученые считали истории моряков об исполинских волнах-убийцах, которые возникают из ниоткуда и топят корабли, всего лишь морским фольклором.
Долгое время блуждающие волны считались выдумкой, так как они не укладывались ни в одну существовавшую на то время математические модели расчётов возникновения и их поведения, потому как волны высотой более 21 метра в океанах планеты Земля не могут существовать.

Одно из первых описаний волны-монстра относится к 1826 году. Её высота была более 25 метров и заметили её в Атлантическом океане недалеко от Бискайского залива. Этому сообщению никто не поверил. А в 1840 году мореплаватель Дюмон д’Юрвиль рискнул явиться на заседание Французского географического общества и заявить, что своими глазами видел 35-метровую волну. Присутствующие подняли его на смех. Но историй о громадных волнах-призраках, которые появлялись внезапно посреди океана даже при небольшом шторме, и своей крутизной походили на отвесные стены воды, становилось все больше.

Исторические свидетельства «волн-убийц»

Так, в 1933 году корабль ВМС США «Рамапо» попал в шторм в Тихом океане. Семь суток корабль бросало по волнам. А утром 7 февраля сзади внезапно подкрался невероятной высоты вал. Вначале судно швырнуло в глубокую пропасть, а потом подняло почти вертикально на гору пенящейся воды. Экипаж, которому посчастливилось выжить, зафиксировал высоту волны — 34 метра. Двигалась она со скоростью 23 м/сек, или 85 км/ч. Пока что это считается самой высокой когда-либо измеренной волной-убийцей.

Во время Второй мировой войны, в 1942 году, лайнер «Королева Мария» вез 16 тыс. американских военных из Нью-Йорка в Великобританию (между прочим, рекорд по количеству человек, перевозимых на одном судне). Неожиданно возникла 28-метровая волна. «Верхняя палуба была на обычной высоте, и вдруг — раз! — она резко ушла вниз», — вспоминал доктор Норвал Картер, находившийся на борту злополучного корабля. Корабль накренился под углом 53 градуса — если бы угол составил хотя бы на три градуса больше, гибель была бы неизбежной. История «Королевы Марии» легла в основу голливудского фильма «Посейдон».

Однако 1 января 1995 года на нефтяной платформе «Дропнер» в Северном море у побережья Норвегии была впервые приборно зафиксирована волна высотой в 25,6 метров, названная волной Дропнера. Проект «Максимальная волна» позволил по-новому посмотреть на причины гибели сухогрузов судов, которые перевозили контейнеры и другие немаловажные грузы. Дальнейшие исследования зафиксировали за три недели по всему земному шару более 10 одиночных гигантских волн, высота которых превышала 20 метров. Новый проект получил название Wave Atlas (Атлас волн), в котором предусматривается составление всемирной карты наблюдавшихся волн-монстров и её последующую обработку и дополнение.

Причины возникновения

Существует несколько гипотез о причинах возникновения экстремальных волн. Многие из них лишены здравого смысла. Наиболее простые объяснения построены на анализе простой суперпозиции волн разной длины. Оценки, однако, показывают, что вероятность экстремальных волн в такой схеме оказывается слишком мала. Другая заслуживающая внимания гипотеза предполагает возможность фокусировки волновой энергии в некоторых структурах поверхностных течений. Эти структуры, однако, слишком специфичны для того, чтобы механизм фокусировки энергии мог объяснить систематическое возникновение экстремальных волн. Наиболее достоверное объяснение возникновения экстремальных волн должно основываться на внутренних механизмах нелинейных поверхностных волн без привлечения внешних факторов.

Интересно, что такие волны могут быть как гребнями, так и впадинами, что подтверждается очевидцами. Дальнейшее исследование привлекает эффекты нелинейности в ветровых волнах, способные приводить к образованию небольших групп волн (пакетов) или отдельных волн (солитонов), способных проходить большие расстояния без значительного изменения своей структуры. Подобные пакеты также неоднократно наблюдались на практике. Характерными особенностями таких групп волн, подтверждающими данную теорию, является то, что они движутся независимо от прочего волнения и имеют небольшую ширину (менее 1 км), причем высоты резко спадают по краям.

Впрочем, полностью прояснить природу аномальных волн пока не удалось.

Причины

Батиметрия на плато Кергелен в Южном океане регулирует ход Кергелен глубокой западной границе течения , части глобальной сети океанических течений.

Динамика океана определяет и описывает движение воды в океанах. Поля температуры и движения океана можно разделить на три отдельных слоя: смешанный (поверхностный) слой, верхний слой океана (выше термоклина) и глубинный океан. Океанские течения измеряются в sverdrup (sv) , где 1 sv эквивалентен объемному расходу 1 000 000 м 3 (35 000 000 куб. Футов) в секунду.

Поверхностные течения, которые составляют только 8% всей воды в океане, обычно ограничиваются верхним слоем воды океана 400 м (1300 футов) и отделены от нижних областей за счет изменения температуры и солености, которые влияют на плотность воды , который, в свою очередь, определяет каждый океанический регион. Поскольку движение глубокой воды в океанских бассейнах вызывается силами, зависящими от плотности, и гравитацией, глубокие воды опускаются в глубокие океанические бассейны в высоких широтах, где температуры достаточно низкие, чтобы вызвать увеличение плотности.

Циркуляция, приводимая в движение ветром

Поверхностные океанические течения вызываются ветровыми течениями, преобладающие крупномасштабные ветры вызывают основные устойчивые океанические течения, а сезонные или случайные ветры вызывают течения, имеющие такую ​​же постоянство, что и ветры, которые их двигают, и эффект Кориолиса играет важную роль в их развитии. Распределение скорости по спирали Экмана приводит к тому, что течения, текущие под углом к ​​движущемуся ветру, образуют типичные спирали по часовой стрелке в северном полушарии и вращение против часовой стрелки в южном полушарии . Кроме того, области поверхностных океанских течений несколько меняются в зависимости от времени года ; это наиболее заметно в экваториальных течениях.

Глубоководные океанические бассейны обычно имеют несимметричное поверхностное течение, т. Е. Проточная ветвь восточного экватора широкая и диффузная, тогда как западное пограничное течение, протекающее в направлении полюса, относительно узкое.

Термохалинное кровообращение

Глубокие океанические течения обусловлены градиентами плотности и температуры. Эта термохалинная циркуляция также известна как конвейерная лента океана. Эти течения, иногда называемые подводными реками, текут глубоко под поверхностью океана и скрыты от немедленного обнаружения. Там, где наблюдается значительное вертикальное движение океанских течений, это называется апвеллингом и даунвеллингом . В настоящее время глубоководные океанические течения исследуются с помощью флота подводных роботов под названием Арго .

Термохалинная циркуляция является частью крупномасштабной циркуляции океана, которая вызвана глобальными градиентами плотности, создаваемыми поверхностным теплом и потоками пресной воды . Прилагательное термохалин происходит от термо- относящегося к температуре и -халинного, относящегося к содержанию соли , факторов, которые вместе определяют . Поверхностные течения, вызываемые ветром (такие как Гольфстрим ), движутся к полюсам от экваториальной части Атлантического океана , охлаждают по пути и в конечном итоге опускаются в высоких широтах (образуя глубокие воды Северной Атлантики ). Затем эта плотная вода стекает в бассейны океана . Хотя основная его часть поднимается вверх в Южном океане , самые старые воды (с временем прохождения около 1000 лет) поднимаются вверх в северной части Тихого океана. Таким образом, между океанскими бассейнами происходит интенсивное перемешивание, уменьшая различия между ними и делая океаны Земли глобальной системой. В своем путешествии водные массы переносят по земному шару как энергию (в виде тепла), так и материю (твердые, растворенные вещества и газы). Таким образом, состояние циркуляции оказывает большое влияние на климат Земли. Термохалинную циркуляцию иногда называют океанской конвейерной лентой, великим океанским конвейером или глобальной конвейерной лентой. Иногда его неточно используют для обозначения меридиональной циркуляции опрокидывания, MOC .

Объединив данные, собранные НАСА / Лабораторией реактивного движения с помощью нескольких различных спутниковых датчиков, исследователи смогли «прорваться» через поверхность океана, чтобы обнаружить «медиков» — сверхсоленые водовороты в теплой воде, которые берут начало в Средиземном море, а затем тонут еще больше. чем в полумиле под водой в Атлантическом океане. Медди показаны красным на этом научном рисунке.

Измеритель тока записи

Исследования: самая глубокая точка Мирового океана

Ученые сходятся во мнениях, что мировой океан изучен только на 2–7%.

Первое кругосветное плавание (морская экспедиция) была совершена 20 сентября 1519 года и завершилась 6 сентября 1522 года под командованием Фернана Магеллана.

Экспедиция доказала наличие единого Мирового океана и представила практическое свидетельство о шарообразности Земли.

С изобретением эхолота в начале ХХ века появилась возможность более плотного исследования океанского дна, определения морского рельефа и глубин. Основным препятствием к изучению и освоению пространства Мирового океана для человека стала невозможность длительное время находиться под водой.

В 1960-м году исследователям удалось опуститься на дно самой глубокой точки Мирового океана – Марианской впадины. Её глубина составляет почти 11 тысяч метров, а давление воды на дне сминает обычный корабль буквально в лепёшку.

Тем не менее, опустившись на эту глубину, люди с удивлением обнаружили, что на дне кипит жизнь. Морские рачки, моллюски и даже рыбы сумели приспособиться к огромному давлению, почти полному отсутствию кислорода и солнечного света.

Сейсмические сигналы

Волны океанской воды генерируют наземные сейсмические волны, которые распространяются на сотни километров вглубь суши. Эти сейсмические сигналы обычно имеют период 6 ± 2 секунды. О таких записях впервые сообщили и поняли примерно в 1900 году.

Есть два типа сейсмических «океанских волн». Первичные волны генерируются на мелководье в результате прямого взаимодействия водной волны с сушей и имеют тот же период, что и водные волны (от 10 до 16 секунд). Более мощные вторичные волны генерируются суперпозицией океанских волн равного периода, движущихся в противоположных направлениях, таким образом, генерируя стоячие гравитационные волны — с соответствующими колебаниями давления на половине периода, которые не уменьшаются с глубиной. Теория генерации микросейсм стоячими волнами была предложена Майклом Лонге-Хиггинсом в 1950 году, после того как в 1941 году Пьер Бернар предложил эту связь со стоячими волнами на основе наблюдений.

Чем грозит рост уровня моря

Главная проблема повышения уровня Мирового океана — затопление прибрежных районов. Последствия изменения климата и роста уровня воды первыми почувствуют на себе малые островные государства и территории в Тихом и Индийском океанах, например, Кирибати, Маршалловы острова или Гавайи. Они могут вовсе исчезнуть с лица Земли. Дополнительный нагрев моря затрудняет размножение рыбы, что негативно повлияет на морской промысел, который является одним из главных источников дохода для жителей этих регионов.

Зеленая экономика

Прощай, Бордо: десять неприятных последствий глобального потепления

Чуть более теплый океан вызывает больше сильных ураганов, тайфунов и штормов, что разрушительно сказывается на прибрежных городах. Восемь из десяти крупнейших мегаполисов мира, где проживают сотни миллионов человек, располагаются недалеко от побережья. Исследования показывают, что в период с 1963 по 2012 годы почти половина всех смертей от ураганов в Атлантике случилась из-за штормовых нагонов, вызванных потеплением океана.

Рост уровня воды угрожает инфраструктуре городов, промышленности, грозит загрязнением питьевых источников и т.п. От соленой морской воды пострадают не только источники пресной воды, но и сельское хозяйство в целом, что вызовет массовый голод. Можно ожидать глобальную миграцию и климатических беженцев.

Зеленая экономика

Великое переселение будущего: кто такие климатические мигранты

К 2100 году повышение уровня моря на один метр при нулевом росте населения затронет 410 млн. человек по всем миру. По прогнозам Всемирного банка, к 2050 году ущерб мировой экономике только от наводнений составит до $52 млрд в год. Эта цифра может вырасти до $1 трлн в год, если к наводнениям прибавить ущерб от непосредственного повышения уровня океана.

Более теплая вода в океанах повышает их кислотность и снижает уровень кислорода, что негативно сказывается на биоразнообразии и экосистемах в целом. Если глобальная температура увеличится на 2 °C в сравнении с доиндустриальной эпохой, то коралловые рифы исчезнут почти полностью.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector